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Abstract

The clarinet has been extensively studied by various theoretical and experimental tech-

niques. In this paper, the harmonic balance method (HBM), a numerical method mainly work-

ing in the frequency domain, has been applied to solve a simple nonlinear clarinet model

consisting of a linear exciter (for the reed) nonlinearly coupled to a linear resonator with

visco-thermal losses (for the pipe). A recent and improved implementation of the HBM for

self-sustained instruments has allowed us to study the model theoretically when including dis-

persion in the pipe or mass and damping terms in the reed model. The resulting periodic solu-

tions for the internal pressure spectrum and the corresponding playing frequency are shown to

align well with previous theoretical and experimental knowledge of the clarinet. Finally, we

present and briefly discuss a few (probably unstable) oscillation regimes both with the

HBM and with a real clarinet.
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1. Introduction

After the first theoretical attempt to derive the spectrum of reed instruments by

Worman [1], improvements have been made to determine the nature of the bifurca-

tion and the spectrum at small oscillations [2], the influence of the main control
parameters on the square signal [3], and the transition between small oscillations

and the square signal [4]. A numerical method called the harmonic balance method

(HBM) has been adopted and developed by Schumacher [5] and Gilbert et al. [6] for

self-sustained instruments, and an approximate analytical method called the variable

truncation method (VTM) was established by Kergomard et al. [4] to obtain analyt-

ical results, which were compared with the results of the HBM.

A good reason for employing frequency-domain methods like HBM and VTM is

that the solutions found do not depend on the history as they do with time-domain
methods. All solutions, stable and unstable, can, in principle, thus be found, which is

convenient when studying the influence and control of the different parameters of a

given model (cf. [7]). As a natural consequence, HBM and VTM are not useful for

studies of transients.

An efficient computing tool using the HBM has been developed by Farner (see [7])

enabling us to present solutions not presented earlier. It makes it possible to follow a

solution as a parameter changes, for example from small to large oscillations, and

thereby easily study the influence of the parameters such as mouth pressure, visco-
thermal dissipation in the pipe, and dispersion, as well as the effective stiffness, mass,

and damping of the reed.

In the next two sections, we briefly describe a common physical model for the

clarinet and the two methods, HBM and VTM, for solving the model equations.

Then we study aspects of this model by starting with a simplified version of it and

successively adding the effects of dispersion (inharmonicity of the resonator) and

the influence of the reed resonance (reed mass and damping) to end up with the de-

scribed model.
We mainly restrict the study to the first harmonic of the pressure in the mouth-

piece and note that exact numerical solutions would be obtained by the HBM if infi-

nitely many harmonics were taken into account.
2. Model of the clarinet

The clarinet may be modelled as a self-sustained oscillator with a linear exciter
(the reed) [8] that is coupled nonlinearly to a linear resonator (the pipe). A common

model is described in this section where the simplifications ignore, for instance, re-

cent knowledge on torsional modes of the reed [9–11] and the interaction between

the reed and the mouthpiece lay [12] as well as nonlinear effects in the pipe

[13,14]. Furthermore, any acoustic effects of the player�s vocal tract are omitted. De-

spite its simplicity, this model incorporates many important characteristics of the

real clarinet [15,9]. A sketch of the mouthpiece is shown in Fig. 1 including the mean-

ing of the physical quantities used. Dimensionless quantities are introduced (marked



Fig. 1. Schematic view, not to scale, of the clarinet mouthpiece with physical quantities.
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with a tilde in this section only) to generalize the graphs and facilitate the later devel-

opments in the VTM.
2.1. The reed

The exciter of a clarinet is the reed, which converts energy supplied by the flow of
air from the mouth (at elevated pressure pm, assumed constant) into acoustic energy.

Following Wilson and Beavers [16], we treat the reed as a linear spring with mass per

unit area lr, resonant frequency xr, and specific damping gr. Its displacement y from

the equilibrium position is then related to the pressure p in the mouthpiece by:

€yðtÞ þ gr _yðtÞ þ x2
r yðtÞ ¼

1

lr

ðpðtÞ � pmÞ; ð1Þ

where the dots signify time derivatives. The bore of the instrument is represented by

its fundamental resonance with angular frequency xp and a series of higher reso-

nances (cf Section 2.2). The maximum negative value of y is �H, at which the reed

closes, when the mouth pressure is equal to a certain value pM. Using a tilde to indi-
cate dimensionless quantities, we write:

~y ¼ y=H reed position

~P ¼ p=pM acoustic pressure in the mouthpiece

~t ¼ txp time

ð2Þ

We nondimensionalize the acoustic pressure in the mouth, the blowing pressure, in

terms of pM:

c ¼ pm=pM ð3Þ
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The dimensionless version of Eq. (1) is then:

M€~yð~tÞ þ R _~yð~tÞ þ K~yð~tÞ ¼ ~pð~tÞ � c; ð4Þ
where K is the dimensionless stiffness, M the dimensionless mass and R the dimen-

sionless damping [7]. We have K = 1 because the reed closes (y = �H) when pm = pM,

thus M = (xp/xr)
2 and R = xpgr/xr

2.

Note that in this system the player�s embouchure may be incorporated to some

degree, in that different positions of, and forces applied by, the lips yield different val-

ues of M and R.

A simplified description can be made by setting M = R = 0:

~yð~tÞ ¼ ~pð~tÞ � c: ð5Þ
This simple spring representation of the reed may be good if the playing frequency is
low compared to the reed frequency (xp � xr) and the harmonics around xr so

small that they do not interact with the resonance peak of the reed. The resonance

frequency of the reed, xr/2p, is normally above 2000 Hz.

2.2. The pipe

The pipe is usually characterized by its input impedance [17], which describes its

resonances. We are interested in the oscillation mechanism, and high frequencies are
relatively unimportant to our study, so we make some severe approximations. We

assume at first that the impedance maxima of the bore are exactly harmonic, and

that their relative heights are determined only by visco-thermal losses. In practice,

the frequencies of the first few impedance maxima of a real clarinet are in approxi-

mately harmonic ratios, while the higher frequency peaks are successively further

from harmonic [18]. Some of the frequency-dependent effects thus neglected here

are those due to the shape of the bell, the mouthpiece, the tone holes and the diam-

eter variations along the bore. Other frequency-dependent effects are those of the
radiation impedance at the end (incorporated to first order as a length correction)

and the wave dispersion (discussed in Section 5).

The oscillation may be regarded as the interaction between the standing wave in

the bore (produced by reflections at both ends) and the reed, where the volume veloc-

ity wave u(t) interacts with the pressure p(t) in the mouthpiece. In the Fourier do-

main we write with dimensionless quantities

~P ðxÞ ¼ ~ZðxÞ ~UðxÞ; ð6Þ
where the capital letters P and U are used for the Fourier transforms of the time do-

main quantities p and u. The dimensionless input impedance is given by [4,17]:

~ZðxÞ ¼ Z
Z0

¼ j tanðklÞ ð7Þ

with

kl ¼ pf
2f 0

þ ð1� jÞwg
ffiffiffiffi
f
f0

s
; ð8Þ
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where f = x/2p being the frequency, w being related to the Prandtl number [3]

(w . 1.3 for common conditions in air), f0 = c/4l, l being the length of the pipe,

and g is a dimensionless loss parameter (see [3]).

In Eq. (8), the real part of the last term on the right is the dispersion term due to

visco-thermal effects (i.e., frequency depending on the sound velocity), while the
imaginary part is due to visco-thermal losses.

If we ignore the dispersion term in addition to the aforesaid approximations, the

resonance frequencies are harmonically related, and the input impedance for the nth

harmonic can be written with the following simplified formula taking advantage of

the fact that g generally is small (typically 0.02 for the clarinet):

Zn ¼
1=ð ffiffiffi

n
p

wgÞ; for odd n;ffiffiffi
n

p
wg; for even n:

�
ð9Þ
2.3. The nonlinear coupling

When there is a pressure difference ~p � c between inside the mouth and inside the
mouthpiece, air will flow with a volume flow ~u ¼ uZ0=pM, where Z0 = qc/S is the

characteristic input impedance of the pipe with air density q, sound speed c in air,

and cross section S of the pipe. Assuming some hypotheses and in particular that

the system is sufficiently stationary for Bernoulli�s law to be valid [19], a nonlinear

expression with dimensionless quantities [3] can be obtained for the volume flow:

~uð~p; ~yÞ ¼ fð1þ ~yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j c� ~p j

p
signðc� ~pÞ ð10Þ

for ~y > �1, and otherwise 0, signifying in simple terms that the reed bends up and

blocks the opening of the mouthpiece for a part of the oscillation period, though
the real behavior is slightly different [12]. This last case is more complex so we limit

the study to the non-beating reed regimes and stop the curves before the reed starts

to beat.

The ‘‘embouchure’’ parameter

f ¼ Z0wH

ffiffiffiffiffiffiffiffiffi
2

qpM

s
ð11Þ

characterizes the mouthpiece and the mouth position of the musician, w being the

width of the reed channel. f depends on the stiffness of the reed, on the lips� position,
and on the ratio between the cross sections of the reed canal and of the pipe. Its value

is important especially for attack transients.

Strictly speaking, there is also a contribution to the volume flow from the reed dis-

placement to the volume flow of air (ur in Fig. 1). This is often included in the imped-
ance of the pipe by a length correction [20], which does not change the harmonicity

of the pipe�s resonances.
If a simple reed model is used, i.e., Eq. (5), then Eq. (10) simplifies to

~uð~pÞ ¼ fð1þ ~p � cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j c� ~p j

p
signðc� ~pÞ ð12Þ

for ~p > c� 1 and 0 otherwise.
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This gives us a set of three Eqs. (4), (6) and (10) to be solved. As noted earlier,

only dimensionless quantities will be used in the following, so we omit the tilde.

One of our purposes is to calculate the playing frequency, which depends on the first

resonance of the pipe and the effective resonance of the reed, so it is convenient to

introduce these two constants: fp = xp/2p and fr = xr/2p. Note that fp/f0 if we disre-
gard dispersion.
3. Solving methods

3.1. The harmonic balance method

The nonlinear problem can be solved by means of the harmonic balance method
(HBM), which is a numerical method to calculate the steady-state spectrum of peri-

odic solutions of nonlinear oscillating systems. The method can be used on free-os-

cillating systems [21] and extended to self-sustained musical instruments such as the

clarinet [6].

We assume that the Fourier series of the pressure in the mouthpiece may be trun-

cated to Np harmonics (partials) plus the DC component. Separating real and imag-

inary parts, we represent the pressure spectrum by ~P with 2Np + 2 real components.

The three model Eqs. (4), (6) and (10) may be formulated by the fixed point rep-
resentation ~F ð~P ; f Þ where ~P must satisfy

~P ¼ ~F ð~P ; f Þ ð13Þ

for a playing frequency f, which is unknown since the interaction with the reed and

dispersion will cause f to differ from the frequency of the first resonance of the res-

onator. This gives 2Np + 2 equations and 2Np + 3 unknowns.

A periodic signal is invariant to a shift in the time domain, so the solution can be

shifted to make the first harmonic real and thus its imaginary part zero. This reduces

the number of unknowns to 2NP + 2, and a finite number of solutions of Eq. (13)
may then be found by searching for a root of

~Gð~P ; f Þ ¼
~P �~F ð~P ; f Þ

P 1

; ð14Þ

i.e., ~G ¼ 0, except for the component corresponding to the imaginary part of the first
harmonic. The nonzero denominator P1 prevents the trivial solution ~P ¼ 0. From an

estimated solution ð~P i
; f iÞ we use the Newton–Raphson method, which follows the

locally steepest descent direction of ~Gð~P ; f Þ and returns a step ðD~P ;Df Þ to a point

ð~P iþ1
; f iþ1Þ normally closer to a solution. Note that the change in the playing fre-

quency is treated directly in the Newton–Raphson step of the method, as detailed

by Farner et al. [7].

The iteration process may be stabilized by, for example, a backtracking routine

[22], which avoids a diverging step caused by a locally unfavorable shape of ~G.
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We expect that a solution of Eq. (13) would be a periodic solution of our Eqs. (4), (6)

and (10) except for the aliasing problem, which is diminished by a sufficiently high

sampling rate. It must be noted that the method says nothing about the stability

of the solution.

The method is described in detail in [7], which also presents a realization of the
HBM for self-sustained musical instruments through a free computer program called

Harmbal [23]. The program is made to handle more general models composed of a

linear exciter and resonator with a nonlinear coupling. This program was used for

the present calculations in conjunction with a Perl script (called hbmap) for contin-

uation, i.e., using one result to calculate the next when varying a parameter.
3.2. The variable truncation method

The variable truncation method (VTM) [4] is an analytical method based on trun-

cation of the Fourier series obtained from the governing equations and separation of

the symmetric and antisymmetric harmonics. In the present system, we simplify the

nonlinear equation to Eq. (12) by ignoring the mass and damping of the reed, then

we expand it to a third-order polynomial in p, which is sufficient for small oscilla-

tions, i.e., close to the oscillation threshold:

uðpÞ ¼ u00 þ Ap þ Bp2 þ Cp3; ð15Þ
where

u00 ¼ fð1� cÞ ffiffiffi
c

p
; A ¼ f 3c�1

2
ffiffi
c

p ;

B ¼ �f 3cþ1

8c3=2
; C ¼ �f cþ1

16c5=2
:

ð16Þ

The internal pressure p(t) is then written as a Fourier series with harmonics Pi like in

the HBM, and assumed to contain only odd harmonics (i = 1,3,5,. . .) with P1 real. In

brief, the volume flow u(t) is decomposed into a symmetric part (us = u00 + Bp2) and

an antisymmetric one (ua = Ap + Cp3), and ua is truncated to the Nth harmonic and

combined with Eq. (6). This gives a system of N + 1 nonlinear, complex equations

and equally many unknowns, including the playing frequency f (as for the HBM).

However, as shown by Kergomard et al. [4], the result when truncating the nth equa-

tion to the order n is not bad even for a square signal. The VTM thus takes advan-
tage of the fact that higher harmonics have a weak influence on the lower ones.

Close to the threshold, the signal is almost sinusoidal [2] so it is sufficient to trun-

cate the Fourier series to the first harmonic, in which case the VTM reduces to a clas-

sical first-harmonic method. Eq. (15) thus becomes

U 1 ¼ AP 1 þ 3CP 3
1; ð17Þ

and by applying the admittance Y1 = 1/Z1, Eq. (6) becomes U1 = Y1P1 for the first

harmonic, thus

P 2
1 ¼

Y 1 � A
3C

: ð18Þ
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In contrast to the HBM, the first harmonic calculated with the VTM depends only

on the degree of expansion, not the number of harmonics. Thus, in the following

studies we will only compare the first harmonic of the VTM, even though we con-

sider many harmonics with the HBM.
4. Simple reed model

Although the HBM is a powerful method, we start with the elementary case of a

simple reed model without mass and damping, Eq. (5), and with no dispersion, Eq.

(9). This enables us to verify the results with the analytical method VTM. Later on

we use the HBM on cases where analytical solutions are difficult to find.
4.1. Playing frequency

When dispersion is not taken into account, the resonance frequencies of the pipe

are harmonically related. The playing frequency f is thus the same whatever the value

of the mouth pressure and however many harmonics are taken into account. From

Eq. (18), Y1 must be real (as P1 is real), which is satisfied only for f being a resonance

frequency of the pipe. Thus for the lowest register, we get f = fp = f0, where f0 was

defined in Eq. (8).
4.2. The oscillation threshold

Near the oscillation threshold, Eq. (12) can be approximated by the third-order

expansion (15) and solved by the one-harmonic VTM: Eq. (18) implies that the oscil-

lation threshold (P1 = 0) is given by Y1 = A. From Eq. (9) it follows that Y1 = wg,
and thus the weakest blowing pressure that gives oscillation is

cth ¼ 1

9
w
g
f
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ w

g
f

� �2
s0

@
1
A

2

’ 1

3
þ 2

33=2
w
g
f
’ 1

3
þ 0:5

g
f
: ð19Þ

This result is compared with the results of the HBM for a few sets of f and g in Table

1. The table shows good agreement between the two methods and reveals that the

musician must blow harder in the case of higher losses g (cth increases, but less hard
when, for instance, the opening H is decreased ðf /

ffiffiffiffi
H

p
Þ decreases).
4.3. Influence of the number of harmonics

Before using the HBM far from the oscillation threshold, a study of the influence
of the number of harmonics Np is required to optimize the precision while minimiz-

ing the calculation time. Close to the threshold the pressure wave is almost sinusoidal

[2], and thus the first harmonic P1 varies little with Np. Further from the threshold,

an increasing number of harmonics become important, and this influences p1, as



Table 1

Comparison of oscillation thresholds cth obtained using the VTM, Eq. (19), and the HBM with Np = 9 for

some values of f and g

Method g = 0.01 g = 0.02 g = 0.03

f = 0.2 VTM 0.3834

HBM 0.3872

f = 0.4 VTM 0.3458 0.3583 0.3708

HBM 0.3461 0.3593 0.3730

f = 0.6 VTM 0.3500

HBM 0.3504
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shown in Fig. 2 for Np up to 49 harmonics. We have chosen to stop at Np = 9 as P1

varies little, and only at high c, when we add the 11th harmonic, or even another 40

harmonics.

In other contexts, for instance for less visco-thermal losses, more harmonics may

be needed, and it should be made clear that even if higher harmonics are relatively

weak, they are important for the perception of the corresponding sound.

Here, and in all following figures, the curves calculated using the HBM end where

the reed starts to beat. The fact that the beating threshold varies with Np is due to
large overshoots in u(t) for small Np as shown in Fig. 3. Beating occurs only for

Np = 1 and 3 at c = 0.494.
0

0.1

0.2

0.3

0.35 0.4 0.45 0.5

|P
1|

γ

N p = 49
N p = 11
N p = 9
N p = 7
N p = 5
N p = 3
N p = 1

Fig. 2. P1 versus c for different values of Np for f = 0.4, g = 0.02, calculated using the HBM. The curves

are cut at the beating threshold.
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Fig. 3. One period of the oscillation of the volume flow for c = 0.494 for various Np (f = 0.4, g = 0.02).
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4.4. Amplitude of first harmonic

Fig. 4 shows the variation of the first harmonic P1 with respect to the blowing

pressure c obtained using the VTM, i.e., Eq. (18), and using the HBM for Np = 9

harmonics using the cubic expansion and the exact nonlinearity, Eqs. (15) and

(10), respectively.
0

0.1

0.2

0.3

0.4

0.35 0.4 0.45 0.5

|P
1|

γ

HBM cubic
VTM cubic
HBM exact

Fig. 4. Comparison of the first harmonic between the VTM cubic (Eq. (18)) and the HBM using the cubic

and exact versions of the nonlinear equation, Np = 9, f = 0.4, g = 0.02.
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As expected, the first harmonic approximation of the VTM for the cubic model is

very good close to the threshold, where the pressure signal is almost sinusoidal, and

quite good as c approaches 0.4. The fact that the VTM cubic is better than the HBM

cubic is a result of approximations having opposing effects. We also see that the three

curves become one at the oscillation threshold.
Fig. 5 shows how P1 varies with g and f. Firstly, the oscillation threshold cth de-

creases when f increases, whereas it increases when g increases. Indeed, g increases

when the player increases the length of the pipe by closing tone holes. This therefore

makes P1 decrease, and the threshold of oscillation cth increase. This means that the

player would have to blow harder to excite oscillation when the pipe becomes longer,

at least for purely cylindrical pipes. For a real clarinet, however, the elongation of
0

0.05

0.1
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0.25
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0.35
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η=0.005
η=0.01
η=0.02
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0.15
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0.25

0.3

0.35

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

P

γ

ζ=0.2
ζ=0.4
ζ=0.6

Fig. 5. Top: P1 versus c for different values of g, f = 0.4 and Np = 9. Bottom: P1 versus c for different

values of f, g = 0.02 and Np = 9.
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the pipe is achieved by closing tone holes, and Fuks and Sundberg [24] have shown

that the musician does not necessarily need to blow harder for notes involving a long

part of the pipe.

It should be mentioned that similar figures to these have been published in [4], but

with the continuation facilities of Harmbal, the results of the HBM may be followed
quasi-continuously.

4.5. Register change

It is possible for a clarinet player to change the register and play the musical

twelfth, which corresponds to the second eigenfrequency of the clarinet or the third

harmonic, as the clarinet behaves as a closed-open pipe. This regime can be found

using the HBM by setting as an initial condition a playing frequency equal to that
of the third harmonic. As the impedance of this harmonic is smaller than that of

the fundamental, the threshold, which now corresponds to A = Y3., is greater.

From Fig. 6, the lowest register has higher acoustic pressure than the higher reg-

ister for a given mouth pressure. At first this seems to conflict with the measurements

of Fuks and Sundberg [24] and with the reports of clarinettists that the blowing pres-

sure for a given dynamic level is largely independent of register. However, the sen-

sitivity of the ear increases with increasing frequency up to about 3 kHz, so lower

acoustic pressure should be necessary for the higher register to give the same per-
ceived loudness. There is thus not necessarily a contradiction in this. Furthermore,

our model does not take into account that in real performances, the reed may often

operate in a beating regime, and the player may assist the upper register using the

vocal tract. However, Fig. 6 shows that the threshold pressure increases for higher

registers, which is in agreement with informal reports from clarinettists.
0
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0.1

0.15

0.2

0.25

0.3

0.35

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

|P
i|

γ

| P1| for the low register
| P3| for the low register
| P1| for the higher register
| P3| for the higher register

Fig. 6. Register of the fundamental tone of the clarinet and the register of the twelfth (f = 0.4, g = 0.02,

Np = 9).
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5. Effect of dispersion

Dispersion is the effect that the sound velocity varies with the frequency of the

travelling wave. This results in inharmonicity of the pipe impedance, i.e., that the res-

onance frequencies of the pipe are no longer harmonically related.
At the oscillation threshold, the playing frequency f is still equal to the first pipe

resonance fp, but the latter is no longer equal to f0. Instead, its value is determined by

making the real part of Eq. (8) equal to p/2 so that

fp
f0

¼ 1� 2

p
wg

ffiffiffiffiffi
fp
f0

s
: ð20Þ

When the oscillation amplitude grows, higher harmonics start to appear. The higher

pipe resonances are shifted upwards (relative to the first one) due to dispersion, while

the reed movement must stay periodic, i.e., harmonic. To maximize the energy, the

playing frequency therefore increases with increasing importance of the higher har-

monics, as the HBM shows in Fig. 7. Note that the first order of the HBM does only

involve the first harmonic and is thus not able to capture the increase of the playing

frequency with increasing c. The change from the threshold to c = 0.5 is above 0.8%
(about 14 cents). The difference limen for a perceptible pitch shift of similar sounds is

around 0.2% (about 4 cents) [25]. Note that the clarinet player compensates for this

effect by altering the embouchure.

The amplitude of the different harmonics do not change significantly when disper-

sion is added to the model, as seen in Fig. 8. However, the relative phase of the har-

monics changes with c for the same reason as the playing frequency changes: higher,

inharmonic partials of the pipe become important and shift the phases of the har-

monics of the reed movement.
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6. Influence of the reed resonance

In order to study the different effects separately, we now ignore dispersion but

treat the reed as a spring with mass and damping using Eq. (4). From now on this
will be referred to as Model B. (Model A is the simple reed model). Common values

for the reed characteristics are [6]: xr = 23250 s�1 (fr = 3700 Hz), gr = 2900 s�1, and

lr = 0.0231 kg m�2.
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6.1. Pipe resonances independent of reed resonance

As was the case when dispersion was included in the model, the playing frequency

changes with the mouth pressure. In the study by Kergomard and Gilbert [26] of

some aspects of the role of the reed, an approximation of the frequency is given.
In the case where the first resonance of the pipe is far below the reed resonance:

f � fp
fp

¼ � 2

p
ffiffiffi
3

p Rf 1þ 3

4
ðc� cthÞ

� �
; ð21Þ

R having been defined in Section 2.1. The frequency at the threshold is thus given by

fth ¼ ð1� ð2fR=p
ffiffiffi
3

p
ÞÞ. The mouth pressure at the threshold is:

cth ’
1� a2

3� a2
þ 2

1� a2

3� a2

� �3
2 wg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðfr=fpÞ

p
f

ð22Þ

where a = fth/fr.

It is important to note that it is the damping of the reed, and not its mass, that

makes the playing frequency change. Another point is that the damping of the

reed decreases the playing frequency compared to the first frequency of the pipe

(this effect was characterized by a length correction of the pipe by Nederveen

[27]). However, the variation of the playing frequency as c increases is different.

The frequency decreases due to the damping of the reed whereas it increases when

dispersion is taken into account. We will compare the effects in a numerical
example.

Suppose the first frequency of the clarinet is 100 Hz ( xp = 628.3 s�1), which im-

plies that the effective reed resonance frequency is at the 37th harmonic of the pipe.

In this case, the values of M and R are, respectively, 7.3 · 10�4 and 3.4 · 10�3.

Fig. 9 shows that the playing frequency is slightly decreased (0.05%, i.e., not per-

ceptible) compared to the simple reed approximation and that it varies little between

the oscillation and beating thresholds, about 100 times less than the variation caused

by dispersion (cf Fig. 7, note the differing axes). Thus, as far as the playing frequency
is concerned, the effect of the reed resonance is negligibly small when the pipe reso-

nance is far from the reed resonance. It is also interesting to see that Eq. (21) is a

good approximation in the entire regime.

The change in the spectrum is also quite small, as shown in Fig. 10. The phase

difference is completely negligible, and the magnitudes differ by less than 1%.

The approximation of the reed as a simple spring is therefore rather good when

the playing frequency is much smaller than the reed resonance frequency.
6.2. Pipe resonance interacting with reed resonance

Consider now a hypothetical clarinet with a pipe seven times shorter such that the

first resonance frequency of the pipe is fp = 700 Hz. The fifth harmonic is thus just be-

low the reed resonance frequency. In this case, the values ofM andR are, respectively,

3.6 · 10�2 and 2.4 · 10�2. Fig. 11 shows one period of the corresponding solution
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(model B) as well as a period forM = R = 0 (model A). The solution for model B was

obtained from the solution for model A by increasing M and R progressively.

The difference between models A and B as c changes is shown in Fig. 12. Apart

from the deviation of the harmonics, it is striking that the oscillation threshold is
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lowered so that a lower blowing pressure is needed to obtain a sound when the reed

has mass and damping. This is explained by the fact that the third pipe resonance

(the fifth harmonic) interacts with the peak resonance of the reed, and this stabilizes
the oscillation [8].

The frequency changes by about 0.2% in the range of c between the two thresh-

olds, as shown in Fig. 13. This might not be perceptible by the human ear. but

the deviation from model A is about 0.5%, which is above the difference limen

[25]. Observe as well that approximation (21) is effectively no longer valid in the case

where fp is not far from fr, especially for high mouth pressures.
7. Other regimes

The program can find many solutions but cannot decide about their stability. The

clarinet produces a signal close to a square wave in the mouthpiece, and this is the

solution that seems to be the most robust when changing one of the parameters.

Other solutions seem to disappear or turn to the square-wave solution. This can hap-

pen when we change the number of harmonics Np or when for instance c is changed,
and the evolution may depend on the way the change is made.

For example the two following solutions are considered: the first one is the square

solution and will be called solution A in the following. The other ones, called solu-

tions B and C, are nonsquare and have the shapes as shown in Fig. 14. The first res-

onance of the pipe is 100 Hz, so the reed may be considered as a simple spring. But

dispersion is taken into account.

In Figs. 15 and 16, the different components of the pressure are represented as a

function of c for these solutions. They were obtained by decreasing c. We can
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observe a jump for solutions B and C. However, if c is increased from the threshold,

only the square solution is obtained.

The variation of the playing frequency versus c can as well give further details

about these solutions. Solutions B and C seem indeed to operate at another fre-

quency than solution A, as shown in Fig. 17.
These different solutions correspond to cases where the first harmonic is not nec-

essarily the largest one. The third one can indeed be much larger, like for solution C,

or even the seventh or the ninth one, as for solution B. These ‘‘other’’ solutions ap-

pear only for large c because it is only above c = 0.42 that the higher harmonics have

a non-negligible influence, as shown in Fig. 2.
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Another feature of these solutions is that they cannot necessarily be retrieved for

higher values of Np. Thus solution C is not found above 13 harmonics and solution B

above 29 harmonics. However, with other values of the parameters (for instance

g = 0.01), they can be found for a hundred of harmonics.

So it is important to be aware that many solutions can be found with the HBM

but some are not retrieved when Np changes because the beating regime threshold
changes with Np (and the solution is therefore in a domain where the model is not

accurate), or when c changes slightly. A question that then arises concerns the phy-

sicality of such solutions.
8. Comparison with real clarinet

It is interesting to compare the spectra of a clarinet played by a real musician with
that of the model, in spite of the simplifications of the latter. Because the model pre-

dicts several different possible solutions for different oscillation modes with different

spectra, a clarinettist was asked to attempt to produce notes with unusual spectral

envelopes, using a spectrum analyzer as visual feedback. Such notes are difficult to

produce on a clarinet played normally, and require that the clarinettist modify his

embouchure.

Fig. 18 shows two spectra produced using the same fingering but different embou-

chures. The first is that for F3 (f . 156 Hz, written G3). With this fingering, all holes
are closed except for the three most remote from the mouthpiece. The F3 is played

normally and the sound recorded on the instrument axis at the end of the bell. This



Fig. 14. One period of three different pressure waves p(t) for the same set of parameters: Np = 13,

c = 0.485, f = 0.4 and g = 0.02.

1174 C. Fritz et al. / Applied Acoustics 65 (2004) 1155–1180



γ

γ

γ

Fig. 15. Pi (i = 1,. . .,5) versus c for solutions A, B and C with Np = 13, f = 0.4 and g = 0.02.

C. Fritz et al. / Applied Acoustics 65 (2004) 1155–1180 1175



γ

γ

Fig. 16. Pi (i = 7,9) versus c for solutions A, B and C with Np = 13, f = 0.4 and g = 0.02.

1176 C. Fritz et al. / Applied Acoustics 65 (2004) 1155–1180
fingering can also readily be used to play a note in the next register, C5 (f. 523 Hz),

by altering the embouchure rather than by opening the register hole (spectrum not

shown). Also with this fingering, it is possible to play F3 with a third harmonic that

is so strong that it can be heard simultaneously as a separate note. The second spec-
trum of Fig. 18 shows this. This sounds like a chord made from a weak F3 and a

stronger C5. However, this playing regime is difficult for the player to sustain: it

tends to ‘‘jump’’ either to F3 or C5.

Note that in the second case, although the third harmonic is easily the strongest,

the fundamental of F3 is still present and that only the odd harmonics of F3 are pre-

sent. Although the strongest spectral component is that for C5, the corresponding



γ

Fig. 17. Playing frequency for solutions A, B and C, as a function of c.
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note in the second register, this is quite different from a note played in the second

register, especially when the speaker key is used as a register hole. For such notes,

there is no measurable power in frequencies corresponding to the first register,

and the even harmonics are not in general much weaker than the odd harmonics.

(A database of clarinet sound spectra and impedance spectra is at [18].)

So clarinettists can produce very different spectral envelopes. To do so, however,

they use modifications in several of the embouchure parameters, and perhaps the vo-

cal tract. So this ability is not comparable with the ability of the HBM to find various
solutions for the same sets of values of the parameters.
9. Conclusion

In the simplest model, which assumes no dispersion and the reed to be a simple

spring without mass and damping, we found good agreement between the variable

truncation method (VTM) and the harmonic balance method (HBM) close to the
oscillation threshold. The playing frequency was equal to the first resonance of the

pipe, and the Fourier components of the pressure in the mouthpiece were real.

By adding dispersion to the model, the playing frequency was significantly low-

ered (1–2%), especially close to the oscillation threshold (small c). Here, the harmon-

ics of the pressure showed large deviation from the nondispersive case, the phase in

particular.

When common values for the mass, damping, and stiffness of the reed were intro-

duced (but no dispersion), there was only a minor change for xr far from xp, while
for xr/xp . 5.3, there was a small lowering of the playing frequency (of about 0.5%),

a significant one for the oscillation threshold, and a phase shift of the higher
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harmonics of the pressure in the mouthpiece. Mass and damping should thus be

considered when the first resonance of the pipe is quite close to the reed resonance.

In our study we have encountered problems related to the physical stability of the

solutions found by the HBM. When the number of harmonics Np is increased, more

solutions can be found, but it seems that only the rounded square solutions are main-
tained when Np is increased (above 13 and 29 in our two cases). A study of the sta-

bility of the solutions is required.

The program Harmbal offers the possibility of detailed studies of the control

parameters, but also for example the influence of the vocal tract or the compliance

of the reed and the reed flow. A model of a real clarinet for any note could then be

obtained by using a database of clarinet impedance measurements, available for

example at [18], instead of an approximate analytical function.
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