Séminaire n°30


Modélisation et simulation numérique du piano par modèles physiques : schémas préservant l'énergie pour des systèmes non linéaires couplés à des systèmes linéaires


Intervenante:  Juliette Chabassier, INRIA-Bordeaux Sud Ouest, Pau

Contact : juliette.chabassier(at)inria.fr             

Date : 11/06/12

Résumé :

Le piano est un instrument d'une complexité remarquable. Pas moins de 12 000 pièces composent le fameux Steinway modèle D, le plus grand de la gamme des pianos à queue Steinway ! Notre objectif est de modéliser le comportement acoustique et vibratoire de l'instrument dans son ensemble. Nous nous proposons de considérer les pièces principales : marteau, cordes, table d'harmonie et rayonnement dans l'air afin de construire un modèle mathématique et numérique du piano. Il semble que l'aspect non linéaire des cordes a une influence considérable dans le timbre percussif de l'instrument. Nous proposons donc un modèle de cordes non linéaires prenant en compte la raideur liée à l'épaisseur de la corde, ce qui aboutit à un premier système non linéaire d'EDP. De plus, le couplage avec le marteau est lui-même non linéaire. A son extrémité, la corde est fixée au chevalet, afin de transmettre son énergie à la table d'harmonie. Enfin, la table d'harmonie rayonne dans l'air, le champ de pression se modifie et nos oreilles perçoivent un son. La discrétisation d'un système d'une telle taille est un challenge, d'autant plus que certains éléments ou couplages sont non linéaires. La stabilité globale du schéma numérique est acquise grâce à une technique d'énergie. Nous construisons un schéma qui conserve l'énergie totale du système, en assurant la circulation réciproque de l'énergie entre chaque sous système. Des méthodes numériques en temps très différentes sont utilisées sur chaque sous système (schéma innovant sur les cordes, méthode analytique pour la table d'harmonie, différences finies pour le 3D). Le couplage de toutes ces méthodes est effectué de façon efficace grâce à l'utilisation de compléments de Schur ainsi que de multiplicateurs de Lagrange qui assurent la "communication" entre les sous systèmes numériques. Nous présenterons enfin des résultats numériques montrant que ce modèle complet permet d'expliquer certains phénomènes observés dans le piano et jusqu'ici jamais simulés.